random system造句
例句與造句
- Wavelet numerical method for nonlinear random system
用于隨機振動分析的小波數(shù)值方法 - Sensitivity of reliability in nonlinear random systems with independent failure modes
非線性隨機系統(tǒng)的獨立失效模式可靠性靈敏度 - A discrete non - linear random systems model and the self - turning regulator algorithm of non - linear structure
一種離散非線性隨機系統(tǒng)模型及其自校正調(diào)節(jié)器 - The method we present here seems to be a new approach to dynamical response problems of non - linear random systems
應該說,西北一f業(yè)大學博}一學位論文這是研究隨機非線性系統(tǒng)動力響應的一個新途徑。 - This thesis is devoted to the evolutionary random response problems of linear random systems , and to the response problems of the random duffing system due to harmonic excitations
論文重點研究了線性隨機系統(tǒng)在演變隨機激勵下的響應問題,和初步探索隨機duffing方程在諧和激勵下的一些非線性現(xiàn)象。 - It's difficult to find random system in a sentence. 用random system造句挺難的
- By orthogonal polynomial approximation method , we first reduce the random system into its deterministic equivalent one , so the response problem of a random system can be transformed into that of a deterministic system
有關上述gegenbauer多項式方法在隨機振動問題中的應用,現(xiàn)有文獻中尚未見報道。上述三種方法都可以用于求解隨機結構的演變隨機均方響應問題。 - The numerical results show that the responses of the proposed approach are much close to the monte carlo solutions and that the time of calculation of equivalent random systems method is much less than that of the monte carlo
從計算結果可以看出本文解和monte - carlo模擬解十分吻合,而且計算時間相比monte - carlo法少很多。本文提出的等效隨機系統(tǒng)分析法,原理清楚,方法簡單,算例的精度較高,有望在處理非線性隨機動力問題中得到較大發(fā)展。 - The work in this dissertation mainly consists of two parts . in the first part , the dynamic response of nonlinear structures with uncertain physical parameters is studied by means of subsection linearization method and equivalent random systems method , separately . in the second part , a method for analyzing the response of viscoelastic structures with uncertain physical parameters is proposed , with fem in space domain and discrete method in time domain
本文的研究工作主要由兩個部分組成;第一部分是分別用分段線性化方法和等效隨機系統(tǒng)方法對含隨機參數(shù)非線性結構動態(tài)響應統(tǒng)計量的求解;第二部分是建立了用擴階隨機有限元方法求解含隨機參數(shù)粘彈性問題的計算模型。 - Finally , the results are compared with periodic and random chains . then we studied acoustic wave propagation in 1d quasiperiodic and aperiodic systems by means of he transfer matrix . transmission rate , reflection rate , energy flow , logarithmic energy flow , energy density and lyapunov exponent are computed numerically , and compared with periodic and random system
其次研究了聲波在幾種一維準周期和非周期系統(tǒng)中的傳播,通過轉移矩陣的方法,數(shù)值地得到了系統(tǒng)的傳播系數(shù)t _ n 、反射系數(shù)r _ n 、能流密度j _ n ,能量密度e _ n和lyapunov指數(shù),給出了以上各量與傳播長度n以及頻率之間的關系,同時發(fā)現(xiàn)能流及能量密度都具有分形結構,并與周期和隨機系統(tǒng)的結果作了比較。 - Many investigations show that randomicity of structures ? parameter will bring large value of stochastic dynamic response of structures . randomicity of structures ? mechanics parameter may be dominant factors . therefore , introduction of randomicity into system model of structure and using random system model are more reasonable than that of determinate system model
眾多的研究工作表明,結構參數(shù)的隨機變異性可以引起結構隨機動力響應的大幅度漲落,結構力學參數(shù)的隨機性還可能成為主導因素,在結構系統(tǒng)模型中引入隨機性的概念,采用隨機結構系統(tǒng)模型是較確定性結構系統(tǒng)模型更為合理的一種選擇。 - The equivalent random systems method that is clear in principle , simple in plan , and high in precision of example , will be developed in the 2 disposal of dynamic response of structures with uncertain physical parameters . 4 . developments of study on stochastic finite element method ( sfem ) are introduced . for the linear elastic problem , the seem is to mature
介紹了隨機有限元方法的研究現(xiàn)狀,對于線彈性問題,方法趨于成熟,但是用隨機的思想來進行粘彈性結構的分析的研究工作迄今少有見諸報導;本文在空間上采用有限元法,在時域上采用差分的方法,首次建立了用擴階隨機有限元方法求解含隨機參數(shù)粘彈性問題的計算模型,推導了相應的有限元公式,給出了算法,編制了有限元程序。